Loading presentation...

Present Remotely

Send the link below via email or IM

Copy

Present to your audience

Start remote presentation

  • Invited audience members will follow you as you navigate and present
  • People invited to a presentation do not need a Prezi account
  • This link expires 10 minutes after you close the presentation
  • A maximum of 30 users can follow your presentation
  • Learn more about this feature in our knowledge base article

Do you really want to delete this prezi?

Neither you, nor the coeditors you shared it with will be able to recover it again.

DeleteCancel

Make your likes visible on Facebook?

Connect your Facebook account to Prezi and let your likes appear on your timeline.
You can change this under Settings & Account at any time.

No, thanks

Second generation bioethanol: the current technological state and key points for its development

No description
by

Felipe Gomide

on 9 July 2013

Comments (0)

Please log in to add your comment.

Report abuse

Transcript of Second generation bioethanol: the current technological state and key points for its development

Second generation bioethanol:
the current technological state and key points for its development
Alternatives to substitution
Energy
dependency
environmental
impacts
Thinking the oil consumption
lower oil
reserves
Biomass derived fuels
Alternative energy solutions
bioethanol, biomethanol, vegetable oils, biodiesel, bio-gas, biosynthetic gas, bio-oil, Fischer-Tropsch liquids and biohydrogen
BIOFUELS
Ethanol
Higher octane number
less energy density
higher corrosivity
water miscibility
lower steam pressure
lower flame luminosity

The beginnings
Otto
1860
<1894
Europe XIX century
USA XX century
1908
Ford T
Brazil
A short timeline of alcohol production
Historically
world largest
sugar supplier
<1925
<1960
Beginning
using
ethanol as fuel
Low petroleum
prices

Increasing oil consumption
1925
2nd petroleum crisis (1973)
Creation of Proalcool
Increase of alcohol consumption until last 80's.
1975
Flex fuel cars
any blending

New impulse to
the market
2003
lost of protagonism of production

~80% of the cars could use ethanol
2010
The
problem

Scarcity of new fertile lands
old production technology
Expansion of crops endangers the
food security
The possible solution
lignocellulosic ethanol
utilization of residues to produce fuel
better understanding about the processes is required to improve the yields
technology is not cost effective
straw
bagasse
66% plant weight
half of residues conversion
40% increase production
Advantages
Understanding the biochemical
composition of lignocellulosic materials
Scarcity of water for agriculture
Estimations of ethanol
production reveals increments
from 27 to 104 billion liters in 15
years, but it did not suffice a marked that consumes 3,78 trillion liters/year of this alcohol
glucose
galactose
mannose
xylose
arabinose
glicuronic
galacturonic
methylgalactoronic
ligações β 1->4
Steps into the biochemical lignocellulosic bioethanol route
Pretreatment
Hydrolysis
Fermentation
Purification
amorphous
structure
Hidrolysis or Saccarification
inhibition
Current challenges in hydrolysis
reduce the enzyme quantity
improve enzyme activity
reduce the cost of enzymes
improve the hydrolisis overall yield
OGMs?
Fermentation
Ethanol
syrup
cellulose
glycose
hemicellulose
glycose
xylose
mannose
galactose
arabinose
C6
C5
S. cerevisiae
EMP pathway
EtOH
tolerance
Z. mobilis
Pichia striptis
C6
C5
Ethanol biorefinery model
2nd generation
1-ethyl-3-methylimidazolium acetate [Emim] [Ac] at 120ºC, 120 min.
enzymatic saccharification --> 80% glucose yield (6 h), over 90% (24 h).
high lignin extraction
Recent advances
new pretreatments --> ionic liquids
optimisation
modelling
saccarification
New microrganisms
production of ethanol
ethanol resistence
consumption of C6 and C5
kinetic modelling
Balat, M. (2011). Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. Energy Conversionand Management, 52(2), 858–875. doi:10.1016/j.enconman.2010.08.013
Bansal, P., Hall, M., Realff, M. J., Lee, J. H., & Bommarius, A. S. (2009). Modeling cellulase kinetics on lignocellulosic substrates. Biotechnology Advances (27), 833–848.
Cadete, R. M., Melo, M. A., Zilli, J. E., Vital, M. J. S., Mouro, A., Prompt, A. H., … Rosa, C. A. (2013). Spathaspora brasiliensis sp. nov., Spathaspora suhii sp. nov., Spathaspora roraimanensis sp. nov. and Spathaspora xylofermentans sp. nov., four novel (D)-xylose-fermenting yeast species from Brazilian Amazonian forest. Antonie van Leeuwenhoek, 103(2), 421–31. doi:10.1007/s10482-012-9822-z
Cadete, R. M., Melo, M. A., Dussán, K. J., Rodrigues, R. C. L. B., Silva, S. S., Zilli, J. E., … Rosa, C. A. (2012). Diversity and physiological characterization of D-xylose-fermenting yeasts isolated from the Brazilian Amazonian Forest. (E. A. Johnson, Ed.)PloS one, 7(8), e43135. doi:10.1371/journal.pone.0043135
Cardona, C. a, Quintero, J. a, & Paz, I. C. (2010). Production of bioethanol from sugarcane bagasse: Status and perspectives. Bioresource technology, 101(13), 4754–66. doi:10.1016/j.biortech.2009.10.097
Da Costa, A. C. A., Junior, N. P., &Aranda, D. A. G. (2010). The situation of biofuels in Brazil: New generation technologies. Renewable and Sustainable Energy Reviews, 14(9), 3041–3049. doi:10.1016/j.rser.2010.07.058
Da Silva, A. S., Inoue, H., Endo, T., Yano, S., & Bon, E. P. S. (2010). Milling pretreatment of sugarcane bagasse and straw for enzymatic hydrolysis and ethanol fermentation. Bioresource technology, 101(19), 7402–7409. doi:10.1016/j.biortech.2010.05.008
Dias, M. O. S., Cunha, M. P., Jesus, C. D. F., Rocha, G. J. M., Pradella, J. G. C., Rossell, C. E. V, MacielFilho, R., et al. (2011). Second generation ethanol in Brazil: Can it compete with electricity production? Bioresource Technology, 102(19), 8964–8971. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21795041
Ferreira, A. D., Mussatto, S. I., Cadete, R. M., Rosa, C. A., & Silva, S. S. (2011). Ethanol production by a new pentose-fermenting yeast strain, Scheffersomyces stipitis UFMG-IMH 43.2, isolated from the Brazilian forest. Yeast (Chichester, England), 28(7), 547–54. doi:10.1002/yea.1858
Limayem, A., & Ricke, S. C. (2012). Lignocellulosic biomass for bioethanol production: Current perspectives, potential issues and future prospects. Progress in Energy and Combustion Science, 38(4), 449–467. doi:10.1016/j.pecs.2012.03.002
Matsushika, A., Inoue, H., Murakami, K., Takimura, O., Sawayama, S., 2009.Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae.Bioresour.Technol.100, 2392–2398.
Matsushika (2), A , Hiroyuki Inoue, Tsutomu Kodaki and Shigeki Sawayama. Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives ApplMicrobiolBiotechnol (2009) 84:37–53 DOI 10.1007/s00253-009-2101-x
(PL 6.077/2009) http://www.planalto.gov.br/ccivil_03/projetos/PL/2009/msg764-090917.htm, disponível em 12/03/2013
Peri, S., Karra, S., Lee, Y. Y., & Karim, M. N. (2007). Modeling Intrinsic Kinetics of Enzymatic Cellulose Hydrolysis. Biotechnology progress, 23(3), 626–637.
Rudolf, A. Et Al., Simultaneous Saccharification and Fermentation ofSteam-Pretreated Bagasse Using Saccharomycescerevisiae TMB3400 and Pichiastipitis CBS6054. Biotechnology and Bioengineering, Vol. 99, No. 4, March 1, 2008
Sánchez O.J., Cardona, C.A., Cubides D.C.(2005), MODELING OF SIMULTANEOUS SACCHARIFICATION AND FERMENTATION PROCESS COUPLED WITH PERVAPORATIONFOR FUEL ETHANOL PRODUCTION. Disponível em www.enpromer2005.eq.ufrj.br/nukleo/pdfs/0899_ssf_pv.pdf
Santos, D.S. Et. Al., Ethanol Production from Sugarcane Bagasse by Zymomonasmobilis Using Simultaneous Saccharification and Fermentation (SSF) ProcessApplied Biochemistry and Biotechnology; May 2010, Volume 161, Issue 1-8, pp 93-105
Santos, F., Queiróz, J. de, Colodette, J., Fernandes, S. A., Guimarães, V. M., &Resende, S. T. (2012). Potencial da palha de cana-de-açúcar para produção de etanol. Quim. Nova, 35(5), 1004–1010. Retrieved from http://www.scielo.br/pdf/qn/v35n5/a25v35n5.pdf
Santos, J.R.A. Et. Al.; Optimization of ethanol production by Saccharomyces cerevisiae UFPEDA 1238 in simultaneous saccharification and fermentation of delignified sugarcane bagasseIndustrial Crops and Products 36 (2012) 584–588
Soccol, C. R., Vandenberghe, L. P. D. S., Medeiros, A. B. P., Karp, S. G., Buckeridge, M., Ramos, L. P., Pitarelo, A. P., et al. (2010). Bioethanol from lignocelluloses: Status and perspectives in Brazil. Bioresource technology, 101(13), 4820–5. doi:10.1016/j.biortech.2009.11.067
Stephen, JD; Mabee, W. E.; Saddler, J. N. (2012). Will second-generation ethanol be able to compete with first-generation ethanol? Opportunities for cost reduction. Biofuels, BioproductsandBiorefining, 6, 159–176.doi:10.1002/bbb
Taherzadeh, M.J., Karimi, K., 2008. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int. J. Mol. Sci. 9, 1621–1651.




References
Thank you!

I'm open to suggestions and comments
Full transcript