Loading presentation...

Present Remotely

Send the link below via email or IM

Copy

Present to your audience

Start remote presentation

  • Invited audience members will follow you as you navigate and present
  • People invited to a presentation do not need a Prezi account
  • This link expires 10 minutes after you close the presentation
  • A maximum of 30 users can follow your presentation
  • Learn more about this feature in our knowledge base article

Do you really want to delete this prezi?

Neither you, nor the coeditors you shared it with will be able to recover it again.

DeleteCancel

Make your likes visible on Facebook?

Connect your Facebook account to Prezi and let your likes appear on your timeline.
You can change this under Settings & Account at any time.

No, thanks

Теорема Найквиста-Шеннона

No description
by

Depressed Psycho

on 28 December 2012

Comments (0)

Please log in to add your comment.

Report abuse

Transcript of Теорема Найквиста-Шеннона

Теорема Найквиста-Шеннона Презентация Теорема Найквиста-Шеннона Теорема Найквиста-Шеннона (Теорема Котельникова, Теорема отсчётов) гласит, что, если аналоговый сигнал x(t) имеет финитный (ограниченный по ширине) спектр, то он может быть восстановлен однозначно и без потерь по своим дискретным отсчётам, взятым с частотой, строго большей удвоенной верхней частоты fc:
f>2fc Пояснение Такая трактовка рассматривает идеальный случай, когда сигнал начался бесконечно давно и никогда не закончится, а также не имеет во временной характеристике точек разрыва. Именно это подразумевает понятие «спектр, ограниченный частотой fс». Разумеется, реальные сигналы (например, звук на цифровом носителе) не обладают такими свойствами, так как они конечны по времени и, обычно, имеют во временной характеристике разрывы. Соответственно, их спектр бесконечен. В таком случае полное восстановление сигнала невозможно и из теоремы Котельникова вытекают 2 следствия:
1) Любой аналоговый сигнал может быть восстановлен с какой угодно точностью по своим дискретным отсчётам, взятым с частотой f>2fc, где fc — максимальная частота, которой ограничен спектр реального сигнала.
2) Если максимальная частота в сигнале превышает половину частоты дискретизации, то способа восстановить сигнал из дискретного в аналоговый без искажений не существует. История открытия Хотя в западной литературе теорема часто называется теоремой Найквиста со ссылкой на работу 1928 года «Certain topics in telegraph transmission theory», в этой работе речь идёт лишь о требуемой полосе линии связи для передачи импульсного сигнала (частота следования должна быть меньше удвоенной полосы). Таким образом, в контексте теоремы отсчётов справедливо говорить лишь о частоте Найквиста. Примерно в это же время Карл Купфмюллер получил тот же результат. О возможности полной реконструкции исходного сигнала по дискретным отсчётам в этих работах речь не идёт. Теорема была предложена и доказана В. А. Котельниковым в 1933 году в работе «О пропускной способности эфира и проволоки в электросвязи», в которой, в частности, была сформулирована одна из теорем следующим образом: «Любую функцию f(t), состоящую из частот от 0 до fc, можно непрерывно передавать с любой точностью при помощи чисел, следующих друг за другом через 1/(2fc) секунд». Независимо от него эту теорему в 1949 (через 16 лет) году доказал Клод Шеннон, поэтому в западной литературе эту теорему часто называют теоремой Шеннона. В 1999 году Международный научный фонд Эдуарда Рейна (Германия) признал приоритет В. А. Котельникова, наградив его премией в номинации «за фундаментальные исследования» за впервые математически точно сформулированную и доказанную в аспекте коммуникационных технологий теорему отсчётов. Исторические разыскания показывают, однако, что теорема отсчётов как в части утверждения возможности реконструкции аналогового сигнала по дискретным отсчётам, так и в части способа реконструкции, рассматривалась в математическом плане многими учеными и ранее. В частности, первая часть была сформулирована ещё в 1897 году Борелем. Впоследствии было предложено большое число различных способов аппроксимации сигналов с ограниченным спектром, обобщающих теорему отсчётов. Так, вместо кардинального ряда по функциям sinc, являющимся характеристическими функциями прямоугольных импульсов, можно использовать ряды по конечно- или бесконечнократным свёрткам функций sinc. Например, справедливо следующее обобщение ряда Котельникова непрерывной функции x(t) с финитным спектром на основе преобразований Фурье атомарных функций где параметры a, M удовлетворяют неравенству , а интервал дискретизации Развитие теоремы Говоря шире, теорема Котельникова утверждает, что непрерывный сигнал можно представить в виде интерполяционного ряда где — функция sinc. Интервал дискретизации удовлетворяет ограничениям Мгновенные значения данного ряда есть дискретные отсчёты сигнала Материал из Википедии — свободной энциклопедии
Full transcript