Loading presentation...

Present Remotely

Send the link below via email or IM

Copy

Present to your audience

Start remote presentation

  • Invited audience members will follow you as you navigate and present
  • People invited to a presentation do not need a Prezi account
  • This link expires 10 minutes after you close the presentation
  • A maximum of 30 users can follow your presentation
  • Learn more about this feature in our knowledge base article

Do you really want to delete this prezi?

Neither you, nor the coeditors you shared it with will be able to recover it again.

DeleteCancel

Relación de la Matemática con la Física

No description
by

Nico Ibañez

on 11 November 2013

Comments (0)

Please log in to add your comment.

Report abuse

Transcript of Relación de la Matemática con la Física

Relación de la Matemática con la Física
El cálculo infinitesimal o cálculo de infinitesimales
Significado y aplicaciones:
La física y la matemática siempre han ido de la mano. Algunas veces la física ha generado matemáticas y otras veces las matemáticas han ido por su lado.
La física es una ciencia que necesariamente necesita de las matemáticas para existir, si queremos analizar un fenómeno físico, necesitamos traducirlo de algún modo a una expresión matemática, como una ecuación.
La primera razón de la irrupción de las matemáticas en la Física, en los inicios de ambas, es la necesidad de incluir mediciones cuantitativas, además de las cualitativas, para permitir mejorar la capacidad de predicción de las primeras teorías. En un primer momento, tan sólo se utilizaron las operaciones con números más elementales de la aritmética.
Isaac Newton se dio cuenta que sin matemáticas el no podría estudiar física, entonces tubo que desarrollar el cálculo infinitesimal.
El cálculo infinitesimal o cálculo de infinitesimales constituye una parte muy importante de la matemática moderna. Es normal en el contexto matemático, por simplificación, simplemente llamarlo cálculo.
El cálculo, como algoritmo desarrollado en el campo de la matemática, incluye el estudio de los límites, derivadas, integrales y series infinitas, y constituye una gran parte de la educación de las universidades modernas. Más concretamente, el cálculo infinitesimal es el estudio del cambio, en la misma manera que la geometría es el estudio del espacio.
El cálculo infinitesimal tiene amplias aplicaciones en la ciencia y la ingeniería y se usa para resolver problemas para los cuales el álgebra por sí sola es insuficiente. Este cálculo se construye con base en el álgebra, la trigonometría y la geometría analítica e incluye dos campos principales, cálculo diferencial y cálculo integral, que están relacionados por el teorema fundamental del cálculo. En matemática más avanzada, el cálculo es usualmente llamado análisis y está definido como el estudio de las funciones.
Más generalmente, el cálculo puede referirse a cualquier método o sistema de cuantificación guiado por la manipulación simbólica de las expresiones. Algunos ejemplos de otros cálculos bien conocidos son el cálculo proposicional, el cálculo predicativo, el cálculo relacional y el cálculo lambda.
Mientras que algunas ideas del cálculo fueron desarrolladas tempranamente en las matemáticas griegas, chinas, indias, islámicas y japonesas, el uso moderno del cálculo comenzó en Europa, durante el siglo XVII, cuando Isaac Newton y Gottfried Leibniz construyeron con base al trabajo de antiguos matemáticos los principios básicos de esta disciplina. El desarrollo del cálculo fue constituido con base en los conceptos de movimiento instantáneo y el área bajo las curvas.
Las aplicaciones del cálculo diferencial incluyen cómputos que involucran velocidad, aceleración, la pendiente de una recta tangente a una curva y optimización. Las aplicaciones del cálculo integral están en cómputos que incluyen elementos de área, volumen, centro de masa, longitud de arco, trabajo y presión. Aplicaciones más avanzadas incluyen series de potencias y series de Fourier.
El cálculo es también usado para obtener un entendimiento más preciso de la naturaleza del espacio, el tiempo y del movimiento. Por siglos, matemáticos y filósofos lucharon con paradojas que involucraban la división por cero o sumas de series infinitas de números. Estas preguntas surgen en el estudio del y el movimiento y área. El antiguo filósofo griego Zenón dio varios ejemplos famosos de tales paradojas. El cálculo provee herramientas que pueden resolver tales paradojas, especialmente los límites y las series infinitas.
Full transcript